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Abstract

The electric!_eld induced stress intensity factor in a piezoelectric medium of limited electrical polarization
is evaluated based on a strip!saturation model of the Dugdale!type[ Particular emphasis is placed on the
e}ect of the saturation condition on the near tip _eld and the stress intensity factor[ To this end\ the general
solution is derived in terms of the "unspeci_ed# normal electrical displacement distribution along the
saturated strip[ Since the saturated strip is representative of the unknown saturated zone\ the normal
electrical displacement may su}er discontinuity across the saturated strip[ It is found that the crack!tip _eld
and the stress intensity factors depend on the discontinuity of the normal electrical displacement across the
saturated strip although this dependency disappears in some practically important cases[ A crack per!
pendicular to the poling axis in a general poled ferroelectric is discussed in detail to illustrate the implications
of the strip!saturation model for electric!_eld induced cracking[ The results show that some discrepancies
between theory and experiments\ for which the classical linear piezoelectric model gives qualitatively incorrect
results\ can be explained clearly in terms of the stress intensity factor given by the strip!saturation model[ In
particular\ these results are independent of the form of the saturation condition imposed on the saturated
strip[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Recently\ motivated by some discrepancies between theory and experiments on fracture behavior
of piezoelectrics:ferroelectrics\ several important issues have been raised in the literature "e[g[\ see
Pisarenko et al[\ 0874^ Mehta and Virkar\ 0889^ Pak\ 0889\ 0881^ Suo et al[\ 0881^ Tobin and Pak\
0882^ Pak and Tobin\ 0882^ Cao and Evans\ 0883^ Park and Sun\ 0884#[ Much of these issues is
focused on the e}ects of an electrical _eld on the crack growth in a piezoelectric material[ Analysis
based on linear piezoelectric model predicts that an electrical _eld does not induce any non!zero
stress intensity factor "Pak\ 0889\ 0881^ Suo\ 0882#[ In particular\ this implies that an insulating
crack should never grow under an electric!_eld load[ However\ the electric!_eld induced crack
growth has been observed substantially along the direction perpendicular to the applied electrical
_eld "Cao and Evans\ 0883^ Lynch et al[\ 0884#[ Further\ under combined electrical and mechanical
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loading\ linear piezoelectric model predicts that an electrical _eld\ irrespective of its sign\ impedes
the growth of a crack in a poled ferroelectric[ However\ experiments "see Tobin and Pak\ 0882^
Park and Sun\ 0884# have shown that the crack growth along the direction perpendicular to the
poling axis is enhanced by application of an electrical _eld in the same direction as the poling\ and
retarded by an electrical _eld opposite to the poling direction[

In an e}ort to remove these theoretical di.culties\ it is widely recognized that the dielectric
nonlinearity near the crack tip plays an essential role[ Based on the fact that "see Sundar and
Newnham\ 0881# the electrical polarization is achieved by interior ionic movement and the latter
is restricted by a limited state\ an idealized model of polarization saturation has been applied to
isotropic dielectrics by a number of authors\ see\ e[g[ Yang and Suo "0883#\ Lynch et al[ "0884#\
Hao et al[ "0885#\ Gong and Suo "0885#\ Ru et al[ "0886#\ Ru and Mao "0886#\ where the nonlinear
aspect of the polarization saturation has been handled in a manner analogous to plastic yielding[
More recently\ by employing a strip!saturation model of the Dugdale!type "Dugdale\ 0859#\ an
e}ort has been made by Gao et al[ "0886# "see also Gao and Barnett\ 0885# to explore the role of
the polarization saturation in a poled ferroelectric[ Their results show that the polarization satu!
ration o}ers a plausible explanation for the aforementioned discrepancies[ However\ Gao et al[
"0886# have based their discussions on a simpli_ed model " for instance\ they have ignored one of
two degrees of freedom of the displacement _eld and the corresponding boundary conditions\ and
have considered a very special set of material constants#\ and therefore the validity of their
conclusions for a general poled ferroelectric remains unproved[

The present work is motivated by an attempt to explore the role of the polarization saturation
in a general piezoelectric medium[ Of particular interest is the e}ect of the saturation condition on
the stress intensity factors[ The solution procedure\ described in Section 2\ leads to explicit
expressions for the stress intensity factors[ In Section 3\ the implications of the strip!saturation
model for the abovementioned discrepancies are discussed in terms of the electric!_eld induced
stress intensity factor[ Some interesting predictions of the strip!saturation model are pointed out
which need further experimental veri_cation[

1[ Formulation

The basic equations for a piezoelectric are given by
sij\j � 9\ Di\i � 9

gij �
0
1
ðui\ j¦uj\iŁ\ Ei � −f\i

sij � Cijklgkl−ekijEk\ Dk � ekijgij¦oklEl "0#
where ui and f are the displacements and electrical potential\ sij\ gij\ Ei and Di are the stresses\
strains\ electrical _eld and electrical displacements\ and Cijkl\ eijk and oij are the elastic\ piezoelectric
and dielectric constants\ respectively[ In the two!dimensional case "see Stroh\ 0847^ Suo et al[\
0881#\ we consider the solution of the form

u"x\ y# 0

F

G

G

G

G

f

u0"x\ y#

u1"x\ y#

u2"x\ y#

f"x\ y#

J

G

G

G

G

j

� af"x¦py# "1#



C[ Q[ Ru : International Journal of Solids and Structures 25 "0888# 758Ð772 760

where f "�# is an analytic function\ p a complex number and a a constant four!element column[
The equations "0# are satis_ed by arbitrary f "�# if

"cijklak¦elija3# f\jl � 9\ "ejklak−ojla3# f\jl � 9\ i\ k � 0\ 1\ 2\ j\ l � 0\ 1 "2#

For existence of a non!zero vector a\ p has to satisfy an eigen!equation[ For a stable material\ the
eight eigen!roots form four conjugate pairs with non!zero imaginary parts[ Assume that pa are
four distinct roots with positive imaginary parts and aa "a � 0\ 1\ 2\ 3# the associated eigen!vectors\
the general solution of "0# can be given in the form

u"x\ y# � s
3

0

ðaafa"za#¦aafa"aa#Ł\ za � x¦pay\ a � 0\ 1\ 2\ 3 "3#

and the associated stresses and electrical displacements are given by

"s1i\ D1# � s
3

0

ðba f ?a"za#¦ba f ?a"za#Ł\ "s0i\ D0# � −s
3

0

ðbapaf ?a"za#¦bapa f ?a"za#Ł "4#

where fa"�# are four arbitrary analytic functions\ and each of four column vectors ba "a � 0\ 1\ 2\ 3#
is determined by the corresponding pair "p\ a# through

bj �"C1jklak¦elj1a3#"x¦py#\l � 9\ b3 �"e1klak−o1la3#"x¦py#\l � 9 "5#

Thus\ the problem is reduced to determining the four analytic functions fa"�# "a � 0\ 1\ 2\ 3# such
that all mechanical and electrical boundary conditions are satis_ed[ In the paper\ for convenience\
we adopt the notations "see Suo et al[\ 0881#

A � "a0\ a1\ a1\ a3#\ B �"b0\ b1\ b2\ b3#\ f"z# �" f0"z#\ f1"z#\ f2"z#\ f3"z##T

Bp � "p0b0\ p1b1\ p2b2\ p3b3#\ Y 0 iAB−0\ H � Y¦YÞ "6#

2[ The strip!saturation model

As mentioned previously\ the basic idea adopted in this paper is that dielectric nonlinearity is
essential to a physically more realistic description of the crack tip behavior in piezoelectric
materials[ Further\ if the perfect saturation model is employed\ the magnitude of the electrical
displacement should be bounded from above by a given material constant[ Thus\ we have

=D= ¾ a given constant

and the electrical displacement is {{saturated|| when the equality holds[ In the paper\ no further
discussion will be given for the construction of constitutive theory consistent with the above
saturation condition[ Instead\ the strip!saturation model of the Dugdale type will be employed to
investigate the e}ect of limited electrical polarization on the stress intensity factors in piezoelectric
materials[

Since linear piezoelectric model gives singular electrical displacement at the crack tip\ it is
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Fig[ 0[ The strip!model of the Dugdale type[

expected that there will be a saturated zone near the crack tip\ as shown in Fig[ 0[ Exact deter!
mination of the saturated zone in plane deformation is extremely di.cult[ Hence\ following
Dugdale "0859#\ we assume that the unknown saturated zone around the crack tip can be approxi!
mately replaced by a segment directly ahead of the crack tip\ as shown in Fig[ 0[ Hence\ when a
_nite crack situated on the interval L � ð−a\ aŁ is considered\ it is assumed that the electrical
displacement is saturated on two segments ð−c\ −aŁ and ða\ cŁ\ denoted by S\ as shown in Fig[ 1[
Now\ a relevant saturation condition must be imposed on the saturated strip S[ Of course\ one
can choose the saturation condition] =D= � constant along the saturated strip[ However\ since the
saturated strip is representative of the unknown saturated zone\ this saturation condition is not
the only reasonable choice[ In fact\ the saturation condition on the strip S is somewhat uncertain
"obviously\ this uncertainty re~ects the approximate character of the strip!saturation model#[ In
recognition of this fact\ the results which are independent of the form of the saturation condition
are of particular interest[ To express a general saturation condition\ we consider the saturation
condition given in terms of arbitrary normal electrical displacement\ D¦

1 "x# and D−
1 "x#\ along S[

Hence\ the boundary value problem of the strip saturation model for a _nite crack is of the form

s1i � 9\ D1 � 9\ =x= ³ a\ y � 9

u"¦#
i � u"−#

i \ s"¦#
1i � s"−#

1i \ D¦
1 � D¦

1 "x#\ D−
1 � D−

1 "x#\ a ³ =x= ³ c\ y � 9

s1i : s�
1i \ s0i : s�

0i \ D1 : D�
1 \ D0 : D�

0 \ =z= : �\ i � 0\ 1\ 2 "7#

where the subscripts {{¦|| and {{−|| indicate the values from the upper and lower half!planes\ and
s�

ij and D�
i "i � 0\ 1\ j � 0\ 1\ 2# are the remote loading parameters[

Of course\ for chosen saturation condition " for instance\ =D= � constant#\ the corresponding

Fig[ 1[ The strip!saturation model for a _nite crack in a piezoelectric medium[
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values of D¦
1 "x# and D−

1 "x# are unknown in general[ However\ because the electrical displacement
is saturated on the strip S\ its magnitude "and then D¦

1 "x# and D−
1 "x## must be bounded along S

including the crack tips[ The merit of the present method is that\ as will be seen below\ the crack
tip _eld and the stress intensity factors can be exactly determined\ even without any further detail
of D¦

1 "x# and D−
1 "x#\ provided the "unknown# normal electrical displacement is bounded on the

strip S[

2[0[ The `eneral solution

First\ we derive the explicit form of the general solution[ From "4#\ "7#\ the continuities of
traction along the crack faces L and the saturated strip S and of the normal electrical displacement
along L give

Bf ?"x¦#¦BÞf ?"x−# � Bf ?"x−#¦BÞf ?"x¦#¦"9\ 9\ 9\ DD1"x##T\ =x= ³ c "8#

where DD1 �"D¦
1 −D−

1 # denotes the discontinuity of D1 across the saturated strip S "which
vanishes on L#[ The condition "8# can be written in an equivalent form

ðBf ?"x#−BÞf ?"x#Ł¦−ðBf ?"x#−BÞf ?"x#Ł− �"9\ 9\ 9\ DD1"x##T\ =x= ³ c "09#

Note that all functions appearing on the left of "09# are analytic in the whole plane except L¦S
and approach constants at in_nity\ it follows that

Bf ?"z#−BÞf ?"z# � iT9¦C"z#\ C"z# 0
0

1pi gs

"9\ 9\ 9\ DD1"t##T

t−z
dt "00#

in the entire plane\ where T9 is a constant real column and the Cauchy integral C"z# is analytic in
the entire plane except S[ In view of "4#\ "7# and "00#\ we _nd

Bf ?"z# : 0
1
ð"s�

10\ s�
11\ s�

12\ D�
1 #T¦iT9Ł "01#

On using "00#\ the remaining boundary conditions on the crack faces L give

ðBf ?"x#Ł¦¦ðBf ?"x#Ł− � iT9¦C"z#\ =x= ³ a\ y � 9 "02#

Further\ let

f"x¦#−f"x−# � `"x#\ a ³ =x= ³ c\ y � 9 "03#

the displacement continuity condition along the saturated strip S give

ðAf ?"x#−AÞf ?"x#Ł¦−ðAf ?"x#−AÞf ?"x#Ł− �"9\ 9\ 9\ `?"x##T\ a ³ =x= ³ c\ y � 9 "04#

In view of "6#\ "00#\ "04# can be written as

HðBf ?"x#Ł¦− � YÞ"9\ 9\ 9\ DD1"x##T¦"9\ 9\ 9\ i`?"x##T\ a ³ =x= ³ c\ y � 9 "05#

Finally\ the saturation condition on S gives

ðBf ?"x#Ł¦¦ðBf ?"x#Ł− �"�\ �\ �\ D¦
1 "x##T¦iT9¦C"z#−\ a ³ =x= ³ c\ y � 9 "06#

where {{�|| denotes some arbitrary quantities[
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Obviously\ the four analytic functions fa"�# "a � 0\ 1\ 2\ 3# can be determined if the single!variable
analytic function Bf"z# is known[ De_ne

Bf ?"z# 0
0

zz1−a1
h"z#¦i

T9

1
¦

0
1

C"z#\ h"z# �

F

G

G

G

G

f

h0"z#

h1"z#

h2"z#

h3"z#

J

G

G

G

G

j

"07#

It is seen from "02# that h"z# is continuous across the crack faces L and analytic in the whole plane
except the saturated strip S[ From "01#\ "05#Ð"07#\ h"z# is now determined by the following
conditions

ðh"x#Ł¦¦ðh"x#Ł− � z"x1−a1#"�\ �\ �\ 0
1
"D¦

1 "x#¦D−
1 "x###T\ a ³ =x= ³ c\ y � 9^

ðh"x#Ł¦− � z"x1−a1#ðH−0"9\ 9\ 9\ i`?"x##T¦ðH−0"YÞ−Y#Ł"9\ 9\ 9\ 0
1
DD1"x##TŁ\

a ³ =x= ³ c\ y � 9^ h"z# : 0
1
"s�

10\ s�
11\ s�

12\ D�
1 #Tz¦"9\ 9\ 9\ const#T\ =z= : � "08#

where the _rst three components of the constant column appearing on the last line of "08# must be
zero for "07# to be the derivative of a single!valued analytic function in the far _eld limit[ It is seen
from "08# that the analytic function h3"z# can be determined in a decoupled way by

ðh3"x#Ł¦¦ðh3"x#Ł− � 0
1
"D¦

1 "x#¦D−
1 "x##z"x1−a1#\ a ³ =x= ³ c\ y � 9\

h3"z# : 0
1
D�

1 z¦const\ =z= : � "19#

Once h3"z# is known\ the electric potential jump `"x# can be found from "08# as

h3"x¦#−h3"x−# � z"x1−a1#ði`?"x#ðH−0Ł33¦
0
1
ðH−0"YÞ−Y#Ł33DD1"x#Ł\

a ³ =x= ³ c\ y � 9 "10#

Thus\ the other three functions are determined by

ðhi"x#Ł¦− �
0
1

zx1−a1"D¦
1 −D−

1 # $ðH−0"YÞ−Y#Łi3−
ðH−0Łi3
ðH−0Ł33

ðH−0"YÞ−Y#Ł33%
¦

ðH−0Łi3
ðH−0Ł33

ðh3"x#Ł¦−\ a ³ =x= ³ c\ y � 9\ i � 0\ 1\ 2

hi"z# :
0
1

s�
1i z\ =z= : � "11#

with the result

hi"z# �
ðH−0Łi3
ðH−0Ł33

h3"z#¦q"z# $ðH−0"YÞ−Y#Łi3−
ðH−0Łi3
ðH−0Ł33

ðH−0"YÞ−Y#Ł33%
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¦
0
1 $s�

1i−D�
1

ðH−0Łi3
ðH−0Ł33% z\ i � 0\ 1\ 2 "12#

where q"z# is a Cauchy integral de_ned by

q"z# �
0

3pi gS

"D¦
1 "t#−D−

1 "t##zt1−a1

t−z
dt "13#

Hence\ Bf?"z# is given as follows

Bf ?"z# � i
T9

1
¦

0
1

C"z#¦
0
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F
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G

G

G

f

h3"z#
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G

G

G

G

f

ðH−0Ł03:ðH−0Ł33
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0
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G

j

¦
z
1

F

G

G

G

G

f

s�
10−D�

1 ðH−0Ł03:ðH−0Ł33
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11−D�

1 ðH−0Ł13:ðH−0Ł33

s�
12−D�

1 ðH−0Ł23:ðH−0Ł33

9
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G

G

G

G

j

¦q"z#
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ðH−0Ł03
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j

"14#

where the real column T9 should be determined by the asymptotic values of other stress and
electrical displacement components "this will not be discussed in the paper#[

We now determine h3"z#[ Because Bf?"z# exhibits only an inverse square!root singularity at the
two crack tips and cannot exhibit any singularity at the points x � c and x � −c\ h3"z# cannot
exhibit any singularity at all[ Thus\ using the standard method "Muskhelishvili\ 0852#\ h3"z# is
given by

h3"z# �
z"z¦c#"z¦a#"z−a#"z−c#

1pi gS

0
1
"D¦

1 "t#¦D−
1 "t##

"t−z#"z"t¦c#"t−c##¦
dt "15#

with the condition " for the existence of the solution#
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D�
1

1
¦

0
1pi gS

$
0
1
"D¦

1 "t#¦D−
1 "t##z"t1−a1#%

"z"t¦c#"t¦a#"t−a#"t−c##¦
dt � 9 "16#

which determines the size of the saturated segments[ Thus\ the global solution of "7# is given by
"14# in terms of the normal electrical displacement on the saturated strip S[

For example\ if one assumes that "see Gao et al[\ 0886^ Gao and Barnett\ 0885#

D¦
1 "x# � D−

1 "x# � Ds\ a ³ =x= ³ c "17#

it follows that C"z# � q"z# � 9 and then Bf?"z# has an elementary form as follows

Bf ?"z# �
z

1zz1−a1

F

G

G

G

G

f

s�
10−D�

1 ðH−0Ł03:ðH−0Ł33

s�
11−D�

1 ðH−0Ł13:ðH−0Ł33

s�
12−D�

1 ðH−0Ł23:ðH−0Ł33

9

J

G

G

G

G

j

¦i
T9

1

¦
Ds

1p $p¦arccos 0
c1¦az
c"a¦z#1−arccos 0

c1−az
c"z−a#1%

F

G

G

G

G

f

ðH−0Ł03:ðH−0Ł33

ðH−0Ł13:ðH−0Ł33

ðH−0Ł23:ðH−0Ł33

0

J

G

G

G

G

j

"18#

An equivalent form of "18# has been given by Gao and Barnett "0885# for the strip model
"17#[ The solution "18# gives the stress intensity factors as follows

2
KII

KI

KIII
3� zpa 2

s�
10−D�

1 ðH−0Ł03:ðH−0Ł33

s�
11−D�

1 ðH−0Ł13:ðH−0Ł33

s�
12−D�

1 ðH−0Ł23:ðH−0Ł33
3 "29#

Despite its reasonable aspect\ an assumption associated with the model "17# is that the normal
electrical displacement is continuous across the saturated strip S[ Note that because the saturated
strip is representative of the unknown saturated zone\ electrical quantities may su}er discontinuities
across the saturated strip[ Although the fact that there is no charge within the saturated zone
implies

g
2c

2a

ðD¦
1 "x#−D−

1 "x#Ł ds � 9

there is no reason to assert that the jump of D1"x# across the strip S should be ignored in general[
This suggests that the discontinuity of the normal electrical displacement\ which is ignored in "17#\
may play a signi_cant role in the strip!saturation model[ In any case\ because the saturated strip
is just an idealization of the unknown saturated zone\ it is necessary to consider other physically
more relevant saturation conditions " for instance\ =D= � constant# which allow for discontinuity
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of the normal electrical displacement across the strip[ It is this idea that motivates the present
study[

2[1[ The stress intensity factors

We turn to the general model "7#[ Let us consider the crack tip _eld at x � a[ Note that h3"a# � 9
and q"a# is _nite "because the normal electrical displacement is bounded\ see "13#\ "15##^ "14# gives
the dominant!order crack tip _eld at the crack tip x � a

Bf ?"z# �
0
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"20#

In particular\ the stress intensity factors are given by

2
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3� zpa

F

G

G

G

G

G

G

G

f

s�
10−D�

1

ðH−0Ł03

ðH−0Ł33

s�
11−D�

1

ðH−0Ł13

ðH−0Ł33

s�
12−D�

1

ðH−0Ł23

ðH−0Ł33

J

G

G

G

G

G

G

G

j

¦1X
p

a
q"a#

F

G

G

G

G

G

G

G

f

ðH−0"YÞ−Y#Ł03−
ðH−0Ł03

ðH−0Ł33

ðH−0"YÞ−Y#Ł33

ðH−0"YÞ−Y#Ł13−
ðH−0Ł13

ðH−0Ł33

ðH−0"YÞ−Y#Ł33

ðH−0"YÞ−Y#Ł23−
ðH−0Ł23

ðH−0Ł33

ðH−0"YÞ−Y#Ł33

J

G

G

G

G

G

G

G

j

"21#



C[ Q[ Ru : International Journal of Solids and Structures 25 "0888# 758Ð772767

It is noted that there is only an unknown imaginary number q"a# in "20# and "21#\ which represents
the e}ect of the discontinuity of normal electrical displacement on the crack tip _eld[ In particular\
it is seen from "20#\ "21# that the sum of the upper and the lower normal electrical displacements
on the saturated strip\ D¦

1 "x#¦D−
1 "x#\ has no e}ect on the crack tip _eld[ This result implies the

{{invariance|| shown by Gao and Barnett "0885# for the model "17#[
Hence\ without solving the full problem "7#\ the crack!tip _eld and the stress intensity factors

can be determined to within an imaginary coe.cient q"a#\ which is related to the discontinuity of
the normal electrical displacement through "13#[ Because the electrical displacement _eld is satu!
rated on S\ for any physically relevant saturation condition\ the associated tangential electrical
displacement should not exhibit a square!root singularity as the crack tip is approached along S[
From "4#\ "6#\ "20#\ this condition requires that the real part of the fourth component of the
column

"BpB
−0#"Bf ?"z##\ z � x × a "22#

vanishes\ where Bf?"z# is given by "20#[ In general\ because the four roots pa "a � 0\ 1\ 2\ 3# are
distinct\ the condition "22# will not be satis_ed automatically[ If that is the case\ "22# provides the
condition to determine the value of q"a# and then the exact expressions for the crack tip _eld and
the stress intensity factors can be obtained without specifying the form of the saturation condition[
This interesting issue will not be discussed further in the paper because\ as will be seen below\ the
mode!I stress intensity factor is found to be independent of q"a# for the crack perpendicular to the
poling axis in a poled ferroelectric\ which is the focus of the present study[

3[ Discussion

In this section\ we examine the implications of the strip!saturation model "7# for electric!_eld
induced cracking in a general poled ferroelectric[ Although the energy release rate should be
regarded as a more reasonable criterion for fracture of electroelastic solids\ the stress intensity
factor has widely been used for convenience as the fracture criteria for piezoelectric:ferroelectric
materials "see e[g[ Yang and Suo\ 0883^ Lynch et al[\ 0884^ Hao et al[\ 0885^ Gong and Suo\ 0886#[
We now show that the discrepancies between theory and experiments mentioned before can be
explained clearly by the strip!saturation model in terms of the electric!_eld induced stress intensity
factor[

We use the constitutive relations for a poled ferroelectric given in\ e[g[\ Pak "0881#\ Suo et al[
"0881# or Park and Sun "0884#\ where the poling direction is chosen as the positive direction of
the axis!2[ Consider plane!strain deformation of a _nite crack in the ð0Ð2Ł plane^ then\

u1 0 9\ g01 � g11 � g12 � 9\ E1 � D1 � 9 "23#

and the constitutive relations reduce to the forms

2
s00

s22

s02
3� 2

c00 c02 9

c02 c22 9

9 9 c33
3 2

g00

g22

1g02
3−2

9 e20

9 e22

e04 9 3 0
E0

E2 1
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0
D0

D2 1� 0
9 9 e04

e20 e22 9 1 2
g00

g22

1g02
3¦0o00 9

9 o221 0
E0

E21
"c00\ c01\ c02\ c22\ c33\ o00\ e22\ o22\ e04# × 9\ c00c22 × c1

02\ e20 ³ 9 "24#

and

s10 � s12 � 9\ s11"x\ y# � c01g00¦c02g22−e20E2 "25#

As mentioned before\ almost all of the current discrepancies focus on the fracture behavior of a
crack perpendicular to the poling axis in a poled ferroelectric[ In this case\ the real symmetric
matrix H is of the form "see Suo et al[\ 0881#

H � 1 2
0:CL 9 9

9 0:CT 0:e

9 0:e −0:o 3\ CT × 9\ e × 9\ o × 9 "26#

where CT\ e and o represent the elastic moduli\ piezoelectricity and permittivity\ respectively[ It
follows from "26# that

ðH−0Ł03:ðH−0Ł33 � 9\ ðH−0Ł23:ðH−0Ł33 �
−CT

e
³ 9 "27#

Further\ the following anti!symmetric matrix can be written as

Y−YÞ � 1i 2
9\ ImðY02Ł\ ImðY03Ł

−ImðY02Ł\ 9\ ImðY23Ł

−ImðY03Ł\ −ImðY23Ł\ 9 3 "28#

Hence\ from "26#\ "28#\ we have

ðH−0"YÞ−Y#Ł03 � −iCLImðY03Ł\ ðH−0"YÞ−Y#Ł23 � −i
e1CT

e1¦oCT

ImðY23Ł\

ðH−0"YÞ−Y#Ł33 � −i
oeCT

e1¦oCT

ImðY23Ł "39#

Obviously\ these matrices represent the properties of a piezoelectric material and depend not on
the loading condition[ Hence\ it is possible to determine some of their elements by considering
certain special loading conditions[ For instance\ let us consider the mode!I mechanical load "with
D�

2 � 9#[ In this case\ note that

c33D0 �"o00c33¦e1
04#E0¦e04s02 "30#

the coe.cient of the dominant!order tangential electrical displacement directly ahead of the crack
tip is proportional to
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"o00c33¦e1
04#ImðY23Łs�

22 "31#

According to the numerical solutions for this case\ see e[g[ Pak "0881#\ Sosa "0881# and Kumar
and Singh "0885#\ the dominant!order tangential electrical displacement vanishes directly ahead
of the crack tip^ it follows from "31# that

ImðY23Ł � 9 "32#

Hence\ from "21#\ "27#\ "39#\ "32#\ the strip!saturation model gives the mode!I stress intensity
factor at the tip of a crack perpendicular to the poling axis as

KI � zpa $s�
22¦

CT

e
D�

2 % "33#

which is independent of q"a#[ It should be noted that the model "17# gives the same result as "33#
in this special case[ What is proven by the present work is that the result "33# is independent of the
form of the saturation condition[ This fact provides a much stronger basis for the result "33#[

The _rst term on the right of "33# is identical to the mode!I stress intensity factor predicted by
linear piezoelectric model "without polarization saturation#\ and therefore the second term rep!
resents the e}ect of the polarization saturation on the mode!I stress intensity factor[ Because the
fracture of mode!I is of primary interest\ we now examine the implications of "33# for the electric!
_eld induced crack growth in a general poled ferroelectric[ To our knowledge\ this issue has not
been examined for a general poled ferroelectric\ especially in terms of the stress intensity factor[

We now consider several cases separately "s�
02 � 9 for all cases#[

The electrical _eld is parallel to the crack axis

In this case\ "24# and "33# give

KI � zpa 0s�
22¦

CT"c00e22−c02e20#

e"c00c22−c1
02#

s�
22¦

CT

e
"c22e20−c02e22#

"c00c22−c1
02#

s�
001 "34#

Hence\ the electrical _eld parallel to the crack faces has no in~uence on the mode!I stress intensity
factor[ This is in agreement with the experimental fact that an electrical _eld parallel to the crack
faces has no signi_cant e}ect on the crack growth[ Further\ because the coe.cient of the second
term on the right of "34# is positive\ the strip!saturation model predicts a mode!I stress intensity
factor bigger than that predicted by a linear piezoelectric model "in the absence of the stress s�

00#[
This is consistent with the experimental result that the crack perpendicular to the poling axis has
a lower fracture toughness "see Pisarenko et al[\ 0874^ Mehta and Virkar\ 0889#[

In the presence of the stress\ s�
00\ parallel to the crack axis\ "34# predicts that s�

00 has a negative
"or positive# contribution to the mode!I stress intensity factor if its sign is positive "or negative#[
This interesting result has not been mentioned by the previous work "see e[g[ Gao et al[\ 0886\
where the degree of freedom parallel to the crack axis was ignored#[ The validity of this prediction
requires a carefully controlled experimental veri_cation[
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The electrical _eld is perpendicular to the crack axis

Next\ consider an electrical _eld perpendicular to the crack axis[ In this case\ we have

KI � zpa $s�
22¦

CT

e
"c00e22−c02e20#s�

22¦"c22e20−c02e22#s�
00

c00c22−c1
02

¦
CT

e
"c00e

1
22¦c22e

1
20−1c02e20e22#E�

2

c00c22−c1
02

¦
CT

e
o22E

�
2 % "35#

which includes an electric!_eld induced term proportional to the dielectric constant o22[ Note that
all coe.cients of the applied electrical _eld E�

2 on the right of "35# are positive^ it is concluded
that a positive electrical _eld\ applied in the same direction as the poling direction\ enhances the
mode!I stress intensity factor\ while a negative electrical _eld\ applied opposite to the poling
direction\ reduces the mode!I stress intensity factor[ Obviously\ this result is in agreement with the
experiments of Tobin and Pak "0882# and Park and Sun "0884#[ In connection with this\ we note
that some other experimental results have been reported by Kumar and Singh "0885#\ which show
an opposite tendency[ Hence\ further experimental work is needed[

A pure electrical _eld perpendicular to the crack axis

This case is of particular interest[ In the absence of mechanical load\ the electric!_eld induced
mode!I stress intensity factor is given by

KI � zpa
CT

e $
"c00e

1
22¦c22e

1
20−1c02e20e22#

c00c22−c1
02

¦o22%E�
2 "36#

Hence\ an electrical _eld applied in the same direction as the poling produces a positive mode!I
stress intensity factor[ This gives an explanation for the observed electric!_eld induced crack
growth in the direction perpendicular to the applied electrical _eld "see Cao and Evans\ 0883^
Lynch et al[\ 0884#[

Another consequence of "36# is that an electrical _eld applied opposite to the poling direction
produces a negative mode!I stress intensity factor[ Despite the fact that it is in agreement with the
spirit of the experimental results of Tobin and Pak "0882# and Park and Sun "0884#\ this sign e}ect
has not been stated clearly in the previous work "see Gao et al[ "0886#\ where the energy release
rate criterion was used and the sign of the mode!I stress intensity factor was ignored#[ This result
suggest that a crack perpendicular to the poling direction will never grow under an electrical _eld
applied opposite to the poling direction[ An experimental con_rmation is needed for this prediction[

4[ Conclusions

The e}ect of the saturation condition on the crack tip _eld and the stress intensity factors is
examined in the paper for a general piezoelectric medium[ It is found that the exact expression for
the stress intensity factors can be obtained in some cases even without specifying the form of the
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saturation condition[ In particular\ it is the case when the mode!I stress intensity factor is examined
for crack perpendicular to the poling axis in a poled ferroelectric[ In this case\ the results show
that the electric!_eld induced part of the mode!I stress intensity factors is linearly dependent on
the applied electrical _eld and that it changes sign when the direction of applied electrical _eld
reverses[ Thus\ for a general poled ferroelectric\ the strip!saturation model provides a clear and
uni_ed explanation for the aforementioned discrepancies between theory and experiments[ We
emphasize that these results are independent of the form of the saturation condition[ For instance\
a physically more reasonable saturation condition is] =D= � constant along the strip S "because D0

is non!uniform along S\ {{D¦
1 "x# � D−

1 "x# � constant|| does not imply that =D= � constant#[ All
results obtained in the paper are valid for this strongly nonlinear saturation condition\ because the
condition =D= � constant implies that D¦

1 "x# and D−
1 "x# are bounded on the strip S[

Several interesting consequences of the strip!saturation model are pointed out in the paper[ For
instance\ the results "34#\ "35# show that a tensile stress parallel to the crack axis makes a negative
contribution to the mode!I stress intensity factor while a compressive stress makes a positive
contribution[ Furthermore\ it is predicted that\ based on the sign of the mode!I stress intensity
factor\ a crack perpendicular to the poling direction will never grow under an electrical _eld applied
opposite to the poling direction[ These results have not been stated in the previous related studies[
The validity of these predictions needs further experimental veri_cation[
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